From the Rolls-Royce experimental archive: a quarter of a million communications from Rolls-Royce, 1906 to 1960's. Documents from the Sir Henry Royce Memorial Foundation (SHRMF).
Mathematical procedure and equations for a ring governor.
Identifier | ExFiles\Box 61b\4\ scan0004 | |
Date | 13th January 1920 | |
Procedure :- Ring Governor. K + PA{Mr Paterson}/R = S² sin 2(Φ + A/R)k (4) Unknown :- K, P, and R K = initial tension of spring A = deg. advance P = torque of spring per degree movement of ring R = reduction factor S = engine R.P.M. (hundreds) Φ = initial angle of ring k = constant for ring Substitute values for A=0, A=.5 max, and A=max, and corresponding values of S₀, S.₅ and S₁.₀ Then K = S₀² k sin 2 Φ (1), give value to Φ, K is then fixed (a) K + PA.{Mr Paterson}₅/R = k S.₅² sin 2(Φ + A.{Mr Adams}₅/R) } (3) (b) K + PA{Mr Paterson}₁.₀/R = k S₁.₀² sin 2(Φ + A₁.₀/R) } now from ③(a) 2K + PA{Mr Paterson}₁.₀/R = 2k S.₅² sin 2(Φ + A.{Mr Adams}₅/R) and combining with ③(b) K = k[2 S.₅² sin 2(Φ + A.{Mr Adams}₅/R) - S₁.₀² sin 2(Φ + A₁.₀/R)] or y=0 = K/k - 2S.₅² sin 2(Φ + A.{Mr Adams}₅/R) + S₁.₀² sin 2(Φ + A₁.₀/R) (2) Substitute values of R to give y=0, solve for P in ③, substitute in ④ to check original curve. | ||